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Abstract

Direct numerical simulations were performed to investigate the effects of an adverse pressure gradient (APG) on a turbulent boundary
layer. A fully implicit fractional step method was employed to simulate the flows. Equilibrium APG flows were established using a power-
law free-stream distribution, U1 � xm. The streamwise length from the inlet was made sufficiently long that the change in free-stream
velocity associated with the APG did not influence the main stream. The flow with zero pressure gradient (ZPG) was also simulated
and compared with the APG flows. The spatially developing characteristics of the turbulence stresses in the non-equilibrium APG flows
were carefully examined. The instantaneous flow fields and vorticity fluctuations were analyzed to characterize the response of the outer
turbulence to an APG. The present numerical results showed that the mean flows are greatly affected by an APG, and the coherent struc-
tures in the outer layer of the APG flows were more activated than those in the ZPG flow which may be attributed to increased turbu-
lence intensities, shear stresses and pressure fluctuations in the APG systems. Examination of the Reynolds stress budget revealed that
the energy redistribution was enhanced in the outer layer of the APG flows compared to the ZPG flow.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Flows subjected to an adverse pressure gradient (APG)
occur in numerous engineering applications, including dif-
fusers, turbine blades and the trailing edges of airfoils. The
performance of such flow devices is greatly affected by the
presence of an APG. If a turbulent boundary layer flow
encounters a large APG, the flow becomes unstable and,
if the APG is sufficiently large, separates from the surface.
Such separation almost always has negative consequences
such as drag reduction and loss of heat transfer. Thus, it
is of practical importance to investigate the effects of APGs
on turbulent boundary layers.
0142-727X/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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Many important features of APG flows are quite well
understood. In general, as the magnitude of an APG
increases, the mean velocity profile develops a large wake
region and the turbulent kinetic energy decreases in the
near-wall region. Nagano et al. (1993) suggested that this
near-wall reduction in turbulent kinetic energy is due to a
decrease in the production of turbulent kinetic energy.
On the other hand, it is not certain that the standard loga-
rithmic law of the wall holds in APG flows. Skåre and
Krogstad (1994) and Bernard et al. (2003) observed that
the law of the wall is valid for higher Reynolds number
APG flows and for the decelerating flow around an airfoil,
respectively. In contrast, Nagano et al. (1993) showed that
the logarithmic region is shifted below the standard loga-
rithmic law profile for turbulent boundary layer flows
where the pressure gradient is maintained at a nearly
constant positive value. This shift was also observed in
the APG recovery section of a backward-facing step flow
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Fig. 1. Schematic diagram of computational domain.
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(Le et al., 1997) and in other decelerating flows (Spalart
and Watmuff, 1993; Debisschop and Nieuwstadt, 1996).
Nagano et al. (1993) found that the turbulence intensity
profiles in the outer region of APG flows collapse onto a
single curve when normalized by the inlet free-stream
velocity. Coleman et al. (2003) also examined the outer
layer turbulence of a temporally developing flow; however,
their findings cast doubt on whether the velocity fluctua-
tions along the streamlines in the outer region are con-
served. The effects of an APG on the mean velocity and
the outer layer dynamics depend on both the characteristics
of the APG and the geometrical shape of the surface.
Hence, to isolate the effect of an APG, it is necessary to
consider a flat plate surface.

Turbulent flows with an APG have been regarded as
being among the most difficult flows to predict using turbu-
lence models (Wilcox, 1993). The Reynolds stress equa-
tions, which are the basis for closure of the Reynolds
averaged Navier–Stokes equations, include several terms
that must be modeled (e.g., pressure–strain tensor and dis-
sipation). Since direct numerical simulation (DNS) can
provide accurate information directly, DNS findings would
be instructive for the improvement of turbulence models.
The major difficulty in simulating a spatially evolving tur-
bulent boundary layer with an APG is imposing the condi-
tions of free-stream flows and realistic turbulent inflows.
Since there is no systematic way to choose boundary con-
ditions that result in a specific pressure distribution, an iter-
ative procedure is required (Na and Moin, 1998). For these
reasons, only a limited number of DNS studies of APG
flows over a flat plate have been conducted. Moreover, pre-
vious DNSs have failed to reproduce some of the experi-
mental findings for APG flows, such as the existence of
inward turbulent energy transport which is the opposite
of that observed in systems with a zero pressure gradient
(ZPG), and the development of a distinct outer peak in
the streamwise turbulence intensity (Bradshaw, 1967; Cut-
ler and Johnston, 1989; Nagano et al., 1993; Skåre and
Krogstad, 1994). Clauser (1954) suggested a new class of
equilibrium boundary layer with an APG, in which the
ratio of the pressure gradient force to the wall shear force
remains constant. The mean velocity profiles in an equilib-
rium boundary layer at different streamwise locations show
similarity when properly scaled. Townsend (1961) and Mel-
lor and Gibson (1966) showed that an approximate equilib-
rium flow is obtained when the variation of free-stream
velocity in the streamwise direction has the form of a
power-law relation U1 � xm, analogous to Falkner–Skan
laminar flow. Hence a power-law relation is employed in
the present study. This is valuable from the viewpoint of
numerical simulation since the free-stream boundary con-
dition can be applied directly and the strength of the
APG can be controlled simply by adjusting the magnitude
of m.

In the present study, DNSs of spatially developing tur-
bulent boundary layer flows subjected to several APGs
were performed to elucidate the effects of an APG on a tur-
bulent boundary layer. A schematic diagram of the flow
configuration is shown in Fig. 1. The Reynolds number
was varied in the range Reh = 300–1500. To investigate
the effects of an APG, simulations were performed using
three values of m = �0.075, �0.15 and �0.2, representing
mild, moderate and strong APGs, respectively. For com-
parison, the ZPG flow (m = 0) was also simulated. The
evolutions of turbulence intensity and Reynolds stress in
a non-equilibrium turbulent boundary layer were exam-
ined. Instantaneous flow fields and vorticity fluctuations
were analyzed to characterize the response of the outer
layer turbulence to the APG. Finally, the budgets of the
Reynolds stress equations were examined to improve tur-
bulence models.

2. Computational details

For an incompressible flow, the non-dimensional gov-
erning equations are

oui

oxi
¼ 0; ð1Þ

oui

ot
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oxj
uiuj ¼ �

op
oxi
þ 1

Re
o

oxj

oui

oxj
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where xi are the Cartesian coordinates, p is the pressure, ui

are the corresponding velocity components, and Re is the
Reynolds number. All variables are non-dimensionalized
by the momentum thickness hin and free-stream velocity
U0 at the inlet.

The numerical schemes used in the present work were
similar to those of Lee and Sung (2005). The governing
equations were integrated in time using the fractional step
method with the implicit velocity decoupling procedure
proposed by Kim et al. (2002). The computational time
step is Dt+ � 0.2 in wall units. Under this approach, the
terms are first discretized in time using the Crank–Nicolson
method, and then the coupled velocity components in the
convection terms are decoupled using the implicit velocity
decoupling procedure. The decoupled velocity components
are solved without iteration. Because the implicit decou-
pling procedure relieves the Courant–Friedrichs–Lewy
restriction, the computation time is reduced significantly.
The overall accuracy in time is second-order. All of the
terms are resolved with a second-order central difference
scheme in space with a staggered mesh. Details regarding
the numerical algorithm can be found in the paper of
Kim et al. (2002).
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Fig. 2. Free-stream velocity distribution along the upper boundary of
computational domain.
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DNSs of a turbulent boundary layer with an APG were
performed by means of a Message Passing Interface (MPI)
parallel computation using 64 CPUs of a supercomputer
(IBM p690+). The domain size in the streamwise direction
was sufficiently long to reach from a zero pressure gradient
to an equilibrium APG flow. The domain size in the wall-
normal direction was chosen to be about 1.5–2 times the
boundary layer thickness at the exit plane of the computa-
tional domain. The domain size in the spanwise direction
was confirmed to be adequate based on the convergence
of the spanwise correlation to zero at this domain size.
The grid spacing was uniform in the streamwise and span-
wise directions and the grid points in the wall-normal direc-
tion were clustered according to a hyperbolic tangent
distribution. The domain size and mesh resolution used
in the present DNSs are summarized in Table 1. Time-
dependent ZPG turbulent inflow data at the inlet were gen-
erated based on the method of Lund et al. (1998). The Rey-
nolds numbers at the inlet were 300 for the APG flows and
1410 for the ZPG flow. The convective boundary condition
of form (ou/ot)+c(ou/ox) = 0, where c is the local bulk
velocity, was applied at the exit; this boundary condition
allows propagating vortex structure to exit the domain with
minimum distortion. The no-slip condition was imposed at
the solid wall. Periodic boundary conditions were applied
in the spanwise direction.

The free-stream velocity U1 along the upper boundary
of the computational domain was prescribed as

u ¼ U1ðxÞ ¼
U 0 for x < 0;

U 0 1� x
x0

� �m
for x > 0;

(

ov
oy
¼ � ou

ox
;

ow
oy
¼ 0:

ð3Þ

where the streamwise location x0 and m for defining the
free-stream velocity U1 are given in Table 1. Four cases
(m = 0, �0.075, �0.15 and �0.2) were chosen (Fig. 2),
which correspond to ZPG, and mild, moderate and strong
APGs, respectively. In simulations of an APG, a stable
equilibrium flow will be obtained only if the streamwise dis-
tance from the inlet to where the free-stream velocity be-
Table 1
Numerical parameters

m 0 �0.075 �0.15 �0.20
Lx 240 1600 1600 1600
Ly 30 80 80 120
Lz 40 80 80 160
Nx 1025 2049 2049 2049
Ny 161 121 121 161
Nz 513 257 257 513
Dx+ 15 12.5 12.5 12.5
Dymin

+ 0.2 0.17 0.17 0.17
Dymax

+ 40 24 24 24
Dz+ 5 5 5 5
x0 1 �200 �200 �200
gins to change is sufficiently long. This is because APG
flows are very sensitive to upstream conditions and the
pressure disturbance caused by the change in the free-
stream velocity propagates upstream farther than is the
case in systems with other types of pressure gradient (Na
and Moin, 1998). Na and Moin (1998) and Inman and
Bradshaw (1981) indicated that the transient distance
needed is about 20 boundary layer thicknesses. In the pres-
ent study, the transient distance was about 20 times the
boundary layer thickness for m = �0.075 and �0.15, and
about 30 times for m = �0.2. To ascertain the reliability
and accuracy of the present numerical simulations, we
compared the turbulence statistics for the ZPG case
(m = 0) with the experimental data of DeGraaff and Eaton,
2000 (see Figs. 6 and 8). The mean velocity and turbulence
intensities are in good agreement with those of DeGraaff
and Eaton, 2000.
3. Results and discussion

3.1. Mean properties

First, we examine the variations of mean wall variables
along the wall due to the APGs. Fig. 3 shows the stream-
wise distributions of the skin friction Cf and wall pressure
coefficient Cp based on U0 for systems with m = �0.075,
�0.15 and �0.2. It is seen that, in each system, the bound-
ary layer develops under a ZPG at the inlet and then the
streamwise pressure gradient becomes strongly adverse.
In each system, the skin friction decreases rapidly in the
strong pressure gradient region (dCp/dx > 0, dP+/dx > 0),
and then P+ and Cf decrease slowly as the flow achieves
a stable equilibrium state. Here, P+ is the non-dimensional-
ized pressure gradient parameter in wall units, defined as
P+ = m (dP/dx)/qus

3. Cf decreases with increasing pressure
gradient. The lowest value of Cf, observed in the system
with m = �0.2, is on the order of 1.1 � 10�3, indicating
that the flows examined here do not approach separation.
In all of the flows, Cf decreases monotonically all the
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Table 2
Flow parameters

m b G Reh

Present �0.075 0.25 8.13 850–1300
Skote et al. �0.077 0.24 7.6 390–620
Present �0.15 0.73 9.70 1000–1300
Skote et al. �0.15 0.65 8.0–8.3 430–690
Bradshaw �0.15 0.9 9 10,000–20,000
Present �0.20 1.68 12.4 1200–1400
Skare and Krogstad �0.22 20 29.6 40,000–50,000
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way to the end of the computational domain, consistent
with the findings of Skote et al. (1998). However, this
monotonic decrease stands in contrast to the experimental
results of Skåre and Krogstad (1994), who reported that Cf

becomes constant when the flow achieves a stable equilib-
rium state in the downstream region. This discrepancy
may be due the lower Reynolds number used in our
computations.

Clauser (1954) introduced the equilibrium parameters b
and G which can be used to determine whether self-similar-
ity has been achieved. The non-dimensionalized pressure
gradient parameter b is defined as b = (d*/sw) dP/dx, and
the shape factor G is defined as G ¼ ðH � 1Þ=ðH

ffiffiffiffiffiffiffiffiffiffiffi
Cf =2

p
Þ.

Here d* is the displacement thickness, sw is the wall shear
stress and H is the Kármán-type shape factor. The require-
ments for self-similarity are that both b and G should be
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Fig. 4. Clauser’s equilibrium parameters: non-dimensionalized pressure
gradient parameters b and G.
constant along the streamwise direction. As shown in
Fig. 4, b and G increase and then converge to constant val-
ues. Throughout this paper, we shall refer to this region of
constant Clauser’s parameters as the ‘equilibrium region’.
Table 2 lists the values of Clauser’s parameters and the
Reynolds number ranges in the equilibrium region for the
three adverse pressure flows considered here. Note that b
reaches a constant value sooner than G in all systems. This
indicates that even though the balance between pressure
gradient force and skin friction force remains unchanged
as the flow moves downstream, self-similarity is not
attained simultaneously and the mean velocity needs more
streamwise length to be fully developed. The distance
needed to achieve an equilibrium state increases with
increasing m. Fig. 5 shows the velocity defect profiles at five
locations along the streamwise direction in the equilibrium
region for the systems with m = �0.075, �0.15 and �0.2.
Here, the velocity is normalized by the friction velocity us

and defect thickness D ¼ d�
ffiffiffiffiffiffiffiffiffiffiffi
2=Cf

p
: The velocity defect

profiles for the flows with m = �0.075, �0.15 and �0.2
almost coincide, indicating that self-similarity has been
established in the present simulations.

Fig. 6 shows the mean velocity profiles normalized by
wall units in the equilibrium region, along with the profile
for the ZPG flow for comparison. The mean velocity pro-
files of the APG flows exhibit a large wake region. The lin-
ear law of the wall, U+ = y+, holds in the viscous sublayer
(y+ < 5) regardless of b. As b increases, the velocity profiles
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Fig. 5. Velocity defect profiles for five positions downstream in the
equilibrium region.
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are shifted downward monotonically below the standard
logarithmic law. Thus, the present results support previous
reports on the failure of the standard logarithmic law of the
wall in APG boundary layers (Nagano et al., 1993; Na and
Moin, 1998; Spalart and Watmuff, 1993). A similar failure
of the standard logarithmic law is seen in the non-equilib-
rium regions of the present spatially evolving flows (not
shown here). Nagano et al. (1993) and Skåre and Krogstad
(1994) found that the von Kármán constant j of APGs was
the same as that of the ZPG. However, the DNS studies by
Coleman et al. (2003) and Spalart et al., 1986 showed that
for an APG, the slope in the log region was higher than
that of the ZPG. They conjectured that the discrepancy
between their results and those of Nagano et al. (1993)
and Skåre and Krogstad (1994) was that the latter authors
had used higher Reynolds numbers. To isolate the effect of
the APG and eliminate the effect of the Reynolds number,
here we compare the slope in the log region at almost the
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Fig. 7. Profiles of mean velocity derivative.
same Reynolds number. The Reynolds numbers were cho-
sen to be high enough that the von Kármán constant is
almost 0.41 in the ZPG system (Reh > 900, Res > 360). As
seen in Fig. 7, the slope in the log region increases with
increasing b. The starting point of the logarithmic law is
lower in the APG systems than in the ZPG system
(y+ � 30), indicating that the slope in the log region
depends not only on the Reynolds number but also the
APG in the range of Reynolds numbers considered here.
Much higher Reynolds numbers would be needed for Rey-
nolds number to be the dominant factor determining the
law between general and transient departure.
3.2. Second-order turbulent statistics

The presence of an APG significantly affects the turbu-
lent flow statistics. The root-mean-square (r.m.s.) distribu-
tions of velocity fluctuations in the equilibrium region are
shown in Fig. 8. The velocity fluctuations are normalized
by wall units. All three components of the velocity fluctua-
tions increase with increasing APG strength. In the inner
region, the distributions of these components for different
b values do not collapse to a single distribution, despite
normalization by viscous wall units. The inner peak value
of urms/us increases with increasing b; however, the y-loca-
tion of the inner peak remains unchanged as b is varied,
and is similar to that of the ZPG system. An obvious differ-
ence between the APG flows and the ZPG flow is that in
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Fig. 8. Root-mean-square velocity fluctuations in the equilibrium region.
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the former systems, a second outer peak forms as b
increases. For b = 1.68, the magnitude of the outer peak
value is almost the same as that of the inner peak. The y-
locations of peaks for vrms/us and wrms/us are similar to
the outer peak of urms/us and move away from the wall with
increasing b. As shown in Fig. 9, the Reynolds shear stress,
normalized by wall units, exhibits a trend similar to those
observed for vrms/us and wrms/us. In the case of the Rey-
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the peaks of maximum intensity develop in the outer region
as b is increased.

Fig. 10 shows the distributions of r.m.s. velocity fluctu-
ations for m = �0.2 at four streamwise locations (x/
hin = 100, 350 550 and 950) in the non-equilibrium region.
Fig. 10a shows the velocity fluctuations normalized by the
friction velocity, along with the experimental data of Nag-
ano et al. (1993) for comparison. The calculated turbulence
intensities in the present study are in good qualitative
agreement with the experimental data. Initially, all three
components of the turbulence intensity increase due to
the strong APG as the flow moves downstream. After the
pressure gradient has relaxed to the state required for equi-
librium (dP+/dx < 0), good similarity is observed in the
inner region, although self-similarity of the mean velocity
has not yet been attained. This inner self-similarity of the
turbulence intensity is also valid for equilibrium flow.
The y-locations and the values of the inner peak for urms/
us are almost the same irrespective of the streamwise loca-
tion. However, the y-locations of the outer peak move
away from the wall as the flow moves downstream. The
y-locations of the peaks of vrms/us and wrms/us also move
away from the wall. The development of the turbulence
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Fig. 12. Vortical structures in the outer layer (y/d > 0.2): (a) b = 0 and (b)
b = 1.68.
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intensities normalized by the free-stream velocity at the
inlet U0 is plotted in Fig. 10b. All of the calculated compo-
nents of the velocity fluctuations in the inner region
decrease with moving downstream, consistent with previ-
ous studies showing a reduction in the turbulence intensi-
ties normalized by the outer scale in the inner layer
(Nagano et al., 1993). The amount of change in the velocity
fluctuations near the wall increases in the order of urms,
wrms, vrms (Nagano et al., 1993). In the outer region, the
turbulence intensities initially increase, and the magnitude
of this change increases with increasing b in the equilibrium
state. After reaching the maximum value of P+, the turbu-
lence intensity profiles in the outer region do not change
with APG strength whereas the mean velocity defect pro-
files continue to change. This behavior is obviously due
to the non-equilibrium effect. These findings indicate that
the outer turbulence of non-equilibrium APG flows may
be unaltered (Nagano et al., 1993) or may increase (Debiss-
chop and Nieuwstadt, 1996; Coleman et al. 2003) depend-
ing on the conditions of pressure or pressure gradient. The
near-wall reduction in turbulence intensity propagates into
the outer layer as the flow moves downstream. The Rey-
nolds shear stress profiles in the non-equilibrium region
are displayed in Fig. 11. The overall behavior of the Rey-
nolds shear stress is similar to that observed in the wall-
normal turbulence intensities; that is, the y-location of
the maximum peak moves away from the wall.

3.3. Turbulent vortical structures

To observe the responses of outer vortical structures to
an APG, we visualized the vortical structures (y/d > 0.2) in
the equilibrium region using an iso-surface of swirling
strength kci (Zhou et al., 1999) (Fig. 12), where kci is the
imaginary part of the complex conjugate eigenvalue of
the velocity gradient tensor. Examination of the swirling
strength distribution assists in the detection of the cores
of the vortical structures and in distinguishing vortical
structures from shearing regions. Iso-surface values of
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kcid/U1 = 2.5 and 3 were used for the ZPG and APG
flows, respectively (Fig. 12a and b). Comparison of
Fig. 12a and b clearly shows that the outer vortical struc-
tures are enhanced by the APG. Fig. 13 illustrates the dis-
tributions of r.m.s. vorticity fluctuations in the equilibrium
region. As b increases, all of the components of the vortic-
ity fluctuations (xx, xy and xz) decrease in the near-wall
region and increase in the outer region. The increase in vor-
ticity fluctuations in the outer region indicates the enhance-
ment of the outer vortical structures by the APG. It is well
known that vortical structures are closely related to the
production of Reynolds shear stress (Robinson, 1991).
The increase in Reynolds shear stress in the outer layer is
likely due, at least in part, to the enhancement of outer vor-
tical structures.
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Fig. 14 shows the root-mean-square pressure fluctua-
tions, normalized by U0, for m = �0.2 as a function of
wall-normal distance. Initially, the pressure fluctuation
profiles have one local maximum at around y+ � 30. As
the flow moves downstream, the y-location of the maxi-
mum remains unchanged, but the magnitude of the pres-
sure fluctuations decreases. This reduction may be related
y+
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Fig. 14. Distribution of pressure fluctuations.
to the weakening of the near-wall streamwise vorticity
(Fig. 13). Kim (1989) reported that near-wall vortical struc-
tures contribute most to the generation of pressure fluctu-
ations. The near-wall vortical structures are weakened by
increasing the strength of the APG, and consequently the
contribution of these structures to the source term in the
Poisson equation decreases. As a result, the pressure fluctu-
ations decrease in the near-wall region. As the flow moves
downstream, the r.m.s. pressure fluctuation profiles
develop another outer peak which subsequently becomes
more dominant than the inner peak. The y-location of
the outer peak moves away from the wall and is similar
to the y-locations at which peaks were observed in the tur-
bulence intensities and Reynolds shear stress (Figs. 8 and
9). This dominant outer peak may be partially due to the
enhancement of the outer vortical structures by the APG.

3.4. Reynolds stress budget

To see the effect of an APG on a turbulent boundary
layer, we consider the budget of Reynolds stress equations:
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where Eq. (4) is normalized by U0
3/d. Figs. 15 and 16 show

the budgets for normal stresses and Reynolds shear stress
in the equilibrium region. All of the terms near the wall
in the Reynolds stress budget of a system with an APG
are qualitatively similar to, or smaller than, those of the
ZPG system. However, the budgets are significantly dis-
turbed in the outer region, as shown in Figs. 15 and 16.
The viscous diffusion terms are omitted in Figs. 15 and
16 since their contributions are restricted to the region very
close to the wall. In the budget of u02 of the APG flow with
b = 1.68, the dominant second peak of the production term
appears at around y/d � 0.5. This has been observed in
many previous studies, such as that of Skåre and Krogstad
(1994). This peak is mainly due to the high Reynolds shear
stress in this region (Skåre and Krogstad, 1994). The mag-
nitude of stress production for the APG flow is larger than
that for the ZPG flow, and is in balance with the pressure–
strain, dissipation and turbulent transport terms away
from the wall. Note that on going from the ZPG to APG
flow, the turbulent transport term increases in importance
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Fig. 15. Budgets for normal stresses in the equilibrium region normalized by U0
3/d: (a) b = 0 and (b) b = 1.68.
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to a similar degree as the dissipation term. Fig. 17 shows
the profiles of the time-averaged triple product term v0u02

in the equilibrium region along with the experimental data
of Houra et al. (2000). The profiles of v0u02 in the log region
decrease with increasing b. Finally, v0u02 changes its sign
from positive to negative on going from b = 0.73 to 1.68,
as shown in Fig. 17, in qualitative agreement with the
experimental data of Houra et al. (2000). The negative va-
lue of v0u02 means that u02 is transported by the turbulence
toward the wall from the outer layer, which is the exact
opposite of the behavior observed in the ZPG system. In
the profiles of the pressure–strain term, the outer peak ap-
pears and the magnitude of this term increases in the outer
region. In the budgets of v02 and w02, the dissipation terms
are a dominant loss throughout the layer. The pressure–
strain terms are dominant except in the vicinity of the wall.
Similar to the budget of u02, the pressure–strain terms of the
APG flow have an outer peak and are larger than those of
the ZPG flow far from the wall. The pressure–strain term is
known to play a dominant role in energy redistribution
among the components (Mansour et al., 1998). A negative
sign of the pressure–strain term indicates transfer from this
component to other components, whereas a positive sign
denotes an energy gain. The increase in the pressure–strain
term indicates that more energy is redistributed in the outer
region under an APG than under the ZPG. The shear stress
budgets in Fig. 16 are similar to those of u02. The produc-
tion and velocity pressure gradient terms �huop0=oyþ
vop0=oxi show dominant gain and loss terms, respectively.
The production term is in balance with the velocity pres-
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sure gradient term throughout most of the layer. This is in
good agreement with the findings of Skåre and Krogstad
(1994).

4. Summary and conclusions

In the present study, a detailed numerical analysis was
performed to scrutinize the effects of an APG on a turbu-
lent boundary layer. Statistical descriptions of flow quanti-
ties were obtained by performing DNSs of spatially
developing turbulent boundary layer flows subjected to
an APG. The equilibrium flows were established using a
power-law free-stream distribution, U1 � xm, and three
equilibrium flows were simulated (m = �0.075, �0.15 and
�0.2). For comparison, the ZPG system with m = 0 was
also simulated. It was found that the Clauser pressure gra-
dient parameter b converged sooner than did the shape fac-
tor G, indicating that the latter parameter required a
greater streamwise distance to achieve self-similarity after
attaining the force balance. As m increased, the distance
needed to achieve self-similarity increased. The characteris-
tics of the mean and r.m.s. quantities were in qualitative
agreement with those of the Nagano group (Nagano
et al., 1993). The simulation results support the conjecture
that the standard logarithmic law of the wall is not valid
for APG flows. The mean velocity in the logarithmic region
fell below the logarithmic law with increasing the slope of
the APG. For low Reynolds number flows, both the Rey-
nolds number and pressure gradient were important deter-
minants of the mean velocity in the logarithmic region. A
DNS study using higher Reynolds numbers may be able
to more clearly elucidate the validity of the standard loga-
rithmic law of the wall for systems with an APG. As the
flow relaxes to an equilibrium state, the turbulence intensi-
ties, normalized by the inlet free-stream velocity, collapsed
well in the outer region. In the equilibrium region, the pro-
files of the mean velocity defect showed good self-similarity
in the outer layer. The turbulence intensity and Reynolds
shear stress profiles for the various APG systems collapsed
well in the inner region when normalized by the friction
velocity. The outer vortical structures, identified by kci,
were enhanced by the APG, which in turn led to an
increase in the Reynolds shear stress. This caused the devel-
opment of a second peak in the turbulent energy. The pres-
sure fluctuation profiles also showed a second outer peak,
which was of greater magnitude than the first inner peak.
The effects of an APG on the redistribution of energy were
investigated by examining the pressure–strain correlation
tensor in the Reynolds stress budget. The amount of energy
transfer from the streamwise velocity component to the
other two velocity components was larger under an APG
than under the ZPG. The inward turbulent energy trans-
port in the APG flows, which is opposite to that of the
ZPG flow, took place near the log region, which is consis-
tent with previous experimental data.
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